
Opentea Documentation
Release 3.6.0

Team COOP

Jul 21, 2023

CONTENTS

1 OpenTEA 1
1.1 Installation . 2
1.2 Basic Usage . 2

2 Command line 5

3 Acknowledgments 7

4 Building the GUI 9
4.1 Simple Example . 9
4.2 Special blocks . 20
4.3 Data output . 22
4.4 Style adjustments . 23

5 Changelog 25
5.1 [3.6.0] 2023 / 07 / 02 . 25
5.2 Added . 25
5.3 Changed . 25
5.4 [3.5.0] 2023 / 02 / 02 . 25
5.5 Added . 25
5.6 Changed . 25
5.7 Fixed . 26
5.8 [3.4.4] 2022 / 09 / 12 . 26
5.9 Fixed . 26
5.10 [3.4.3] 2022 / 07 / 13 . 26
5.11 Changed . 26
5.12 Fixed . 26
5.13 [3.4.2] 2022 / 07 / 04 . 26
5.14 [3.4.1] 2021 / 10 / 04 . 27
5.15 [3.3.1] 2021 / 05 / 07 . 28
5.16 [3.3.0] 2021 / 03 / 09 . 28
5.17 [3.2.3] 2020 / 11 / 09 . 29
5.18 [3.2.2] 2020 / 11 / 09 . 29
5.19 [3.2.1] 2020 / 06 / 04 . 29
5.20 [3.2] 2020 / 03 / 13 . 30
5.21 [3.1.1] 2020 / 01 / 15 . 30
5.22 [3.1.0] 2019 / 12 / 05 . 30
5.23 [3.0.0] 2019 / 03 / 26 . 31
5.24 [2.3] 2018 / 10 / 17 . 31

6 Indices and tables 33

i

ii

CHAPTER

ONE

OPENTEA

OpenTEA is a graphical user interface engine. It convert a set of degrees of freedom, expressed in SCHEMA, into
graphical forms.

The documentation is currently available in ReadtheDocs

1

https://opentea.readthedocs.io/en/latest/

Opentea Documentation, Release 3.6.0

1.1 Installation

Opentea is OpenSource (Cecill-B) available on PiPY.

>pip install opentea

then test your installation with

>opentea3 test-gui trivial

1.2 Basic Usage

OpenTEA is a GUI engine, based on the json-SCHEMA description. For example, assume a nested information con-
forming to the following SCHEMA :

title: "Trivial form..."
type: object
properties:
first_tab:
type: object
title: Only tab.
process: custom_callback.py
properties:
first_block:
type: object
title: Custom Block
properties:
number_1:
title: "Number 1"
type: number
default: 32.

operand:
title: "Operation"
type: string
default: "+"
enum: ["+", "-", "*", "/"]

number_2:
title: "Number 2"
type: number
default: 10.

result:
title: "result"
state: disabled
type: string
default: "-"

The openTEA GUI will show as :

2 Chapter 1. OpenTEA

Opentea Documentation, Release 3.6.0

In this form, a callback can be added to each tab. The corresponding custom_callback.py script is :

"""Module for the first tab."""

from opentea.process_utils import process_tab

def custom_fun(nob):
"""Update the result."""

operation = nob["first_tab"]["first_block"]["operand"]
nb1 = nob["first_tab"]["first_block"]["number_1"]
nb2 = nob["first_tab"]["first_block"]["number_2"]

res = None
if operation == "+":

res = nb1 + nb2
elif operation == "-":

res = nb1 - nb2
elif operation == "*":

res = nb1 * nb2
elif operation == "/":

res = nb1 / nb2
(continues on next page)

1.2. Basic Usage 3

Opentea Documentation, Release 3.6.0

(continued from previous page)

else:
res = None

nob["first_tab"]["first_block"]["result"] = res
return nob

if __name__ == "__main__":
process_tab(custom_fun)

Note that OpenTEA meomory is a classical nested object named here nob. The memory I/O can be done the usual
Python way : nob["first_tab"]["first_block"]["result"] = res. We however encourage the use our nested
object helper , available on PyPI, which gives a faster -an still pythonic- access to the nested object. The name of the
package is, unsurprisigly nob.

Finally, the data recorded by the GUI is available as a YAML file, conforming to the SCHEMA Validation:

first_tab:
first_block:
number_1: 32.0
number_2: 10.0
operand: +
result: 42.0

4 Chapter 1. OpenTEA

https://pypi.org/project/nob/

CHAPTER

TWO

COMMAND LINE

A small CLI makes available small tools for developpers. Only two tools are present now. Call the CLI using opentea3:

Usage: opentea3 [OPTIONS] COMMAND [ARGS]...

--------------- O P E N T E A III --------------------

You are now using the Command line interface of Opentea 3, a Python3
Tkinter GUI engine based on SCHEMA specifications, created at CERFACS
(https://cerfacs.fr).

This is a python package currently installed in your python environement.
See the full documentation at : https://opentea.readthedocs.io/en/latest/.

Options:
--help Show this message and exit.

Commands:
test-gui Examples of OpenTEA GUIs
test-schema Test if a yaml SCHEMA_FILE is valid for an opentea GUI.

5

Opentea Documentation, Release 3.6.0

6 Chapter 2. Command line

CHAPTER

THREE

ACKNOWLEDGMENTS

This work was funded, among many sources, by the CoE Excellerat and the National project ICARUS. Many thanks to
the people from SAFRAN group for their feedback.

7

https://www.excellerat.eu/wp/
http://cerfacs.fr/coop/whatwedo/ourprojects/

Opentea Documentation, Release 3.6.0

8 Chapter 3. Acknowledgments

CHAPTER

FOUR

BUILDING THE GUI

4.1 Simple Example

We start with the following simple example, step by step, on the SCHEMA specification

The basic structure of the GUI is a graph. The nodes of the graphs are spread over 3 levels, root, tabs and blocks.

- root
- tab 1
- block 1.1
- block 1.2

- tab 2
- block 2.1
- block 2.2
- block 2.3

Root is the Major “Forms”
tab. Tabs are shown in the second line with oragne icons. Then four nested blocks are shown

Root stands for the top-level of the whole form.

Tabs are the nodes grouping parameters of a similar family, such as “numerics”, “boundary conditions”, “meshes”.
One should design the interface with the general idea of a Left to Right filling of the forms. Therefore there is a tacit
order of resolutions between tabs. The last tab must be reserved for the final execution of the action.

9

https://json-schema.org/understanding-json-schema/

Opentea Documentation, Release 3.6.0

Blocks are grouping visually parameters in columns. The packing algorithm is filling the GUI screen in columns. The
width of the general window controls the number of columns packed.

Please, stick this 3-level structure for your GUIs. The packing is optimized for this usage. Less than 3 levels will
probably fail at startup. More than 3 levels (blocks in blocks) will limit the fluidity of the repacking when readjusting
the window.

###Root Node level, the window

A this level, we only create a SCHEMA object (type:object) which can store, as properties , one or several tabs

title: "All you can Eat..."
type: object
properties:
first_tab:

...
second_tab:

...

Root nodes, in yaml are litterally sticking to left margin of your YAML file.

4.1.1 Second Node level, the tab

We define here again a SCHEMA object (type:object) which can store, as properties , one or several hlder objects
called blocks.

..(root)
first_tab:

type: object
title: First tab.
process: custom_callback.py
description: "tab description"
order: 20
properties:
first_block:
...

second_block:
...

A quick tip : Tabs nodes, in yaml are found after 1 indentation (2 spaces, providing you use the standard 2 spaces chars
indentation). The content is found after 2 indentations / 4 chars.

As for now, tabs a displayed in the order of the schema. The Tab level is interpreting the following additionnal attributes:

• description. This attribute is the SCHEMA official attibute. It takes a string. The string will be shown in the
GUI at thebottom left of the Tab.

• process. This attribute is special for opentea. The string refer to the name of a python script to be called when
pressing the “Process” button (a.k.a callback). See section Tabs callbacks for further information. . .

• order This attribute is special for opentea, but have no effect for the moment. It will force the order of Tabs
when the functunality “Hide this tab” will be implemented.

Tab DOES NOT support the attributes imageor documentation. It however supports the attribute description,
providing the string is sufficently short. Indeed, there is no huge room for display at the bottom of the tabs.

10 Chapter 4. Building the GUI

https://json-schema.org/understanding-json-schema/reference/object.html
https://json-schema.org/understanding-json-schema/reference/object.html

Opentea Documentation, Release 3.6.0

Tabs callbacks

Without callbacks, OpenTEA is simply some forms allowing you to fill a nested object (a YAML file on the disc)
according to a SCHEMA specification. Tabs callbacks are the way to add interactivity to your forms. The data passed
from the GUI to the callback is the GUI memory itself, dumped as the file dataset_from_gui.yml. The data passed
from the callback to the GUI is dumped as the file dataset_to_gui.yml

In the end, the signature of the function is callback(nob_in) > nob_out, with nob a python nested object (e.g. dicts
of dicts of lists of anything you can serialize in YAML. . .). YOu can refer to PyYAML documentation for practical
examples.

A typical callback is the following:

"""Module for the first tab."""

from opentea.noob.noob import nob_get, nob_set
from opentea.process_utils import process_tab

def custom_fun(nob_in):
"""Update the result."""
nob_out = nob_in.copy()
operation = nob_get(nob_in, "operand")
nb1 = nob_get(nob_in, "number_1")
nb2 = nob_get(nob_in, "number_2")

res = None
if operation == "+":

res = nb1 + nb2
elif operation == "-":

res = nb1 - nb2
elif operation == "*":

res = nb1 * nb2
elif operation == "/":

res = nb1 / nb2
else:

res = None

raise RuntimeError("Tahiti a plante ce processus")

nob_set(nob_out, res, "result")
return nob_out

if __name__ == "__main__":
process_tab(custom_fun)

Concerning Error Handling. OpenTEA calls a Sub process of a python script. Therefore, a failue in the script will not
freeze the application. The current Tab becomes red, with the message typically Failed after 0.16s. You can customize
: if the script raises a RunTimeError("foobar"), the error string (here "foobar") will be copied to the button status,
typically Failed after 0.16s, RunTimeError: foobar

4.1. Simple Example 11

https://pyyaml.org/wiki/PyYAMLDocumentation

Opentea Documentation, Release 3.6.0

4.1.2 Third Node level, the block

We define here again a SCHEMA object (type:object) which can store, as properties , one or several holder
objects called blocks.

It looks like the following:

......(tab)
first_block:
type: object
title: Customer Info
description: >

Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi
ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur
sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit

(continues on next page)

12 Chapter 4. Building the GUI

https://json-schema.org/understanding-json-schema/reference/object.html

Opentea Documentation, Release 3.6.0

(continued from previous page)

anim id est laborum.

documentation: >

title

subtitle

Lorem ipsum dolor sit amet, consectetur adipiscing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna␣

→˓aliqua.
Ut eru[avbp website](http://www.cerfacs.fr/avbp7x/) nisi
ut aliquip ex ea commodo consequat. Duis aute irure dolor in␣

→˓reprehenderit
in voluptate velit esse cillum dolore eu fugiat nulla pariatur.␣

→˓Excepteur
sint occaecat cupidatat non proident, sunt in culpa qui officia␣

→˓deserunt mollit

subtitle

Lorem ipsum dolor sit amet, consectetur adipiscing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna␣

→˓aliqua.

![image](test-pattern-tv.jpg)

add	bdfsf	vxgc	sds	vwv
11	12	13	14	15
21	22	23	24	25

image: test-pattern-tv.jpg
properties:
name:

...
age:
...

membership:
...

Block nodes, in yaml, are found after three indentation (6 spaces, providing you use the standard 2 spaces chars
indentation). The content is found after four indentations / 8 chars.

You can nest more blocks under blocks if needed.

The Block level is accepting the following additionnal attributes:

• description. This attributes is the SCHEMA official attibute. It takes a string. The string will be shown in the
GUI at the bottom left of the block.

• image. This attribute is specific to OpenTEA, and does not belong to the SCHEMA standard. The image must
be stored in the folder of the main schema file. It will be shown, without scaling, at the bottom of the block.

4.1. Simple Example 13

Opentea Documentation, Release 3.6.0

• documentation. This attribute is specific to OpenTEA, and does not belong to the SCHEMA standard. It takes
a string using Markdown syntax. This wil add at the bottom of the block the blue label “learn more. . . ”. On click
this label trigger the opening of the browser, loading the HTML rendering of the Markdown content. Al features
of Markdown are supoorted. Images must be stored at the root of tge GUI, where the schema is.

• expert.This attribute is specific to OpenTEA. It make the block collapsable. If expertis
set to True, the block is initially collapsed. A click on the + / - witl expand-

collapse it.

4.1.3 Leaf level , or Parameters

Parameters are defined still in acordance with the SCHEMA standard:

Entries

The most basic parameters are called Entries. Here are the most common types :

• string string types

• integer, number, numeric types

• boolean. boolean types

(block)
name:

title: "Name"
type: string
default: "john doe"

age:
title: "Age"
type: integer
default: 42

age:
title: "Weight"
type: number
default: 13.2

membership:
title: "Membership"

(continues on next page)

14 Chapter 4. Building the GUI

https://json-schema.org/understanding-json-schema/reference/string.html
https://json-schema.org/understanding-json-schema/reference/numeric.html
https://json-schema.org/understanding-json-schema/reference/boolean.html

Opentea Documentation, Release 3.6.0

(continued from previous page)

type: boolean
default: False

The appearance is the following:

The gui will check the type of the entry, and refuse invalid inputs.

You can add further validation rules, to prevent non-acceptable values righ from the form, using the SCHEMA valida-
tors. In the following example, the user cannot enter a number outside ofthe range]1, 2[. :

(block)
ent1:
default: 1.3
exclusiveMaximum: true
exclusiveMinimum: true
maximum: 2
minimum: 1
title: Essai double_gt1_lt2
type: number

4.1.4 simple arrays (lists)

The SCHEMA arrays, for the simplest ones, are equivalent to Python’s lists. In the following example, the list is
modifiable by the user, from 0 to 999 elements.

(block)
list_patches:
type: array
title : Liste des patches
items :
type : string
default: single_patch

4.1. Simple Example 15

Opentea Documentation, Release 3.6.0

The list entries look like:

this is given by the SCHEMA:

entlist:
title: List entries
type: object
description: >

List entries
properties:
entl1:
title: String - dynamic
type: array
items:
type: string
default: Catch a tiger

entl2:
title: Integer - X4
type: array
minItems: 4
maxItems: 4
items:
type: integer
default: 42

entl3:
title: Number - 3X
type: array
minItems: 3
maxItems: 3
items:
type: number
default: 666.

16 Chapter 4. Building the GUI

Opentea Documentation, Release 3.6.0

4.1.5 Disabled state

You can set an entry in disabled state when you set the opentea-specific attribute state= disabled. The user wil
not be able to act directly on the value. You can howver promatically modify the value by changing the memory in the
callback. In the following example, a list of string that will be modified by setting the node list_patches to a list of
strings.

(block)
list_patches:
type: array
title : Patch list
state : disabled
items :
type : string
default: single_patch

Choices

The SCHEMA notation for used-defined entries options is the enum attribute :

(block)
ndim_choice:
default: two
enum:
- two
- three
enum_titles:
- 2-D
- 3-D
title: Dimensions
type: string

Note the attribute enum_titles specific to opentea, to override the Titles shown in the GUI.

The choice is initially a radiobutton, but with switch to a combobox beyond 3 items:

4.1. Simple Example 17

Opentea Documentation, Release 3.6.0

In some cases you want to create a choice between options that will be known only at run-time. This is a dynamic
choice. In the following example, the list list_patches is updated by some callbacks. The choice choice_patches
will have its options list updated when list_patches changes.

list_patches:
type: array
title : Liste des patches
state : disabled
items :
type : string
default: single_patch
choice_patches:

title: Choix patches
type: string
ot_dyn_choice: list_patches

Comments

If you want to create an input on multilines, openTea offer the widget comment. It is basically a Textbox. In the yaml,
add simply the decorator ot_type: commentto a string. In the following example, two comment entries are created.

mod_comment:
title: bossa nova
type: string
default: Lorem ipsum sic hamet
height: 20
ot_type: comment

readonly_comment:
title: fdo
type: string
default: Lorem ipsum sic hamet
state: disabled
ot_type: comment

18 Chapter 4. Building the GUI

Opentea Documentation, Release 3.6.0

The height attibute allow to increase the size of the widget. Its default appearance is on 6 lines. The
state=disabledallow to deactivate the user-interaction. The widget content can only be updated by a callback,
which is usefull to present logfiles, informations or input_files generated by the GUI.

4.1.6 Files and folder

When you want a dialog to set a file or a folder, add the attribute ot_type: file. The entry will include a small
button starting a “Selecting file dialog”.

You can limit the search to some extentions using the atrribute “ot_filter: [h5]” (for .h5 files). You also can limit
to directories using the attribute “ot_filter: directory”. In the following example, two widgets are created, a H5 file
selector and a directory selector.

file4:
ot_type: file
ot_filter:
- h5
title: Choix fichier (*.h5)
type: string
default: any.h5

file5:
ot_type: file
ot_filter: directory
title: Choix repertoire
type: string
default: anyfolder

4.1. Simple Example 19

Opentea Documentation, Release 3.6.0

4.2 Special blocks

Special blocks are structures allowing more complexity in the nested object

4.2.1 eXclusive OR objects

The exclusive OR mean that the structure can be either one graph or another, but nothing else.

This stems from the SCHEMA oneOf, which is much more permissive : one graph, or another or a void graph.

To achieve a proper validation with the SCHEMA standard, the XOR structure is the following. Erm. . . brace your-
selves, this is the hardest SCHEMA part you will encounter in this manual:

... (block or tab)
purchase:
title: "select purchase"
type: object
oneOf:
- type: object
required: [takeaway]
properties:
takeaway:
type: object
properties:
...

- type: object
required: [lobby]
properties:
lobby:
type: object
properties:
...

Here the oneOf takes a list of options. Each option is an object with a required single property. :

...(oneOf)
type: object
required: [lobby]

(continues on next page)

20 Chapter 4. Building the GUI

https://json-schema.org/understanding-json-schema/reference/combining.html#oneof

Opentea Documentation, Release 3.6.0

(continued from previous page)

properties:
lobby:
type: object
properties:

...

The XOR Widget full supports the attributes description, documentationor image, like the other blocks.

4.2.2 Multiple objects

This structure is the SCHEMA array, using requiredproperties:

It is a big widget, with a treeview on the left, and a flipform on the right:

... (block or tab)
vegetables:
title: Edible vegetable (Multiple example)
type: array
items:
type: object
required:
- name
- veggieLike
properties:
name:
type: string
description: The name of the vegetable.
default: dummy_vegetable
state: disabled

(continues on next page)

4.2. Special blocks 21

https://json-schema.org/understanding-json-schema/reference/object.html

Opentea Documentation, Release 3.6.0

(continued from previous page)

veggieLike:
type: boolean
description: Do I like this vegetable?
default: False

Opentea requires a compulsory string property, name that you must set as read/only (see example before), This will
help to handle the content of the multiple. Indeed, If your multiple dialogue handle mode than 20 items, you will be
happy to use names and not list index. . . trust me.

The Multiple Widget DOES NOT support the attributes description, documentationor image.

Multiple with dependency

You can link the multiple to another value using the openTEA specific ot_require keyword. It must refer to an
existing node, preferably a list of strings, like here the list_patches information.

mul_cont:
items:
type: object
title: Boundary cond.

ot_require: list_patches
type: array
properties:
(...)

If this list of patches is updated, the items under the multiple influence will be updated.

4.3 Data output

The data is saved as a YAML serialized nested object. The data saved by the GUI “simple_example” in ./src/
opentea/examples/simple/ is looking like this :

irst_tab:
first_block:
age: 42
membership: false
name: john doe

second_block:
purchase:
takeaway:
bag: false

second_tab:
first_block:
vegetables:
- name: dummy_vegetable
veggieLike: false

22 Chapter 4. Building the GUI

Opentea Documentation, Release 3.6.0

4.4 Style adjustments

Most of the styling in the OpenTEA GUI is automatic. The layout, the colors and the widgets cannot be overriden.

The GUI developer can however tune some aspects:

4.4.1 Theme

OpenTEA is powered by Tkinter, and rely on Tkinter themes. The default theme is clam, available on all platforms.
You can force a Tkinter theme available on your platform (aqua on OSX for example), using the optional argument
theme="aqua" on the startup function main_otinker().

4.4.2 Images

The images in the GUI are introduced either with the attribute ‘image’ in blocks, or in the markdown documentation.

4.4.3 Block Descriptions

Block descriptions can be tuned with the following tags inserted in the text:

• <small> decrease the font size to 12

• <tiny> decrease the font size to 10

• <bold>chenge text to bold

• <italic> change text to italic

For example, the following input will create a description with italic, 12pts default font.

description: >
<small> <italic> Lorem ipsum sic hamet

4.4. Style adjustments 23

Opentea Documentation, Release 3.6.0

24 Chapter 4. Building the GUI

CHAPTER

FIVE

CHANGELOG

All notable changes to this project will be documented in this file. The format is based on Keep a Changelog, and this
project adheres to Semantic Versioning.

5.1 [3.6.0] 2023 / 07 / 02

5.2 Added

• Verbose mode on the terminal with loguru output

5.3 Changed

• move from package logging to loguru

5.4 [3.5.0] 2023 / 02 / 02

5.5 Added

• Support to tiny_2d_engine for enmbedding 2D interactive canvas.

5.6 Changed

• Removal of the aggressive splashscreen when starting a new project

• XOr menus now feature an automatic submenus creation is several prefixes are repeated

• switch to combo boxes is moved from 3+ to 5+ choices.

• radiobuttons are sunken to ease options clustering.

25

https://keepachangelog.com/en/1.0.0/
https://semver.org/

Opentea Documentation, Release 3.6.0

5.7 Fixed

• Display labels in containers corrected

• Spurious status changes fixed

• Simplification of coding

5.8 [3.4.4] 2022 / 09 / 12

5.9 Fixed

• validate_light extended to allow : {"void": None} for string validation, because opentea moved void
container description from : None to : {"void": None}.

5.10 [3.4.3] 2022 / 07 / 13

5.11 Changed

• entries of widget file path are scrollable

5.12 Fixed

• reload of dependant boundaries

• bug on disabled lists

5.13 [3.4.2] 2022 / 07 / 04

5.13.1 Changed

• mem_change and mem_check events removed: goal is to be more explicit

• tree (or graph, for exactness) structure well defined for widgets: it is very easy to fully traverse the tree

– the tree can be trasversed by assuming all children are dicts

• status plays a central role now:

– controls style of widgets

– controls update of tab icon

• status computation:

– to increase performance, traverse of full tree is avoided: status computed bottom-up (everytime a leaf status
changes, statuses are updated until the top (but only following that path)

• tree -> children

• tab not passed as input to widgets, as it can quickly be retrieved

26 Chapter 5. Changelog

Opentea Documentation, Release 3.6.0

• previous_value comparison for coloring done against saved value

• new objects to handle creation of related objects (e.g. OTChoice)

• improved naming regarding public and private objects

• default is set when creating object, instead of using nob_complete

• improved TextConsole

• more abstraction

• handle of dependents: instead of a global event everytime there’s a change in a leaf, leaves now “know” which
nodes/leaves depend on them and update them accordingly

• menus are now individual objects: building menus by composition should be trivial (specially useful for connec-
tion to external apps, such as neverd)

• connection to external apps simplified:

– tab_3d key is still supported, but external apps can now be connect via their own yaml

5.13.2 Fixed

• smartpacker non-visible widgets influence

5.14 [3.4.1] 2021 / 10 / 04

5.14.1 Added

• popup menu with copy, paste and move for OTMultipleWidget

• new bindings in OTMultipleWidget (move and deselect)

• move up and down buttons in OTMultipleWidget

• highlight widgets when they are changed (by changing color)

• add scrollbar to disabled listboxes (OTListStatic)

• MouseScrollFrame: scrollable frame scrollable via mouse wheel

• add copy-paste popup menu to OTList and OTListStatic

• add copy-paint binding to OTMultipleWidget

• add row number to multiple treeview

• OTHidden leaf to make it easier to have nodes that can change value, but are not visible

• add several warning message boxes in OTMultipleWidget

5.14. [3.4.1] 2021 / 10 / 04 27

Opentea Documentation, Release 3.6.0

5.14.2 Fixed

• remove double description when ot_type in schema

• bindings in OTMultipleWidget

• no underscores required as prefix in OTMultipleItem names

• OTMultipleItem load button behavior

• multiple changes that were not triggering tab icon change

• checkboxes, menus and radiobuttons do not trigger any action if current value is chosen again

• OTFileBrowser does not raise error when user cancel path search

• OTList behavior: validation of input and error message

• theme selection

• empty titles are not shown in OTContainer

5.14.3 Changed

• OTMultipleWidget.tree is now a dict (instead of list)

• split OTList and OTChoice in smaller objects for easier mantainability

• replaced several tk.Label by ttk.Label in order to make the most out of styles

• multiple treeview is now its own object (MultipleTreeview)

• name only appears in switchform title in OTMultipleItem

• entries with no validation requirements (strings) do not have extra space for status label anymore

5.15 [3.3.1] 2021 / 05 / 07

5.15.1 Fixed

• Fix a pb of repeated items for generation of Hybrid GUIs

• Fix the Import Tk issues for usage of process_utils on non graphical environments.

• Add a .yml filter on file dialogs

5.16 [3.3.0] 2021 / 03 / 09

5.16.1 Added

• adding opentea.__version__ attribute though VERSION file

• adding a new project management. A project name is asked if missing

• nobvisual inspection of projects

• recursive fusion of SCHEMA, for composite GUIs

28 Chapter 5. Changelog

Opentea Documentation, Release 3.6.0

5.16.2 Changed

• the project is saved at each “Validate/Process”

• cursor switch to waiting mode during “Validate/Process”

• the temp. files like dataset_to_gui.yml are now hidden as .dataset_to*

• help windows are now rendered using the tkhtmlview package as a top-level window.

• File dialogs store relative paths, not absolute paths

5.17 [3.2.3] 2020 / 11 / 09

5.17.1 Fixed

• the widget comment is no more recursively adding blank lines.

5.18 [3.2.2] 2020 / 11 / 09

5.18.1 Changed

• nob_complete can now keep the input data that was not in the SCHEMA

5.18.2 Fixed

• some loop holes in validate_light

5.18.3 Deprecated

• H5proxy is deprecated, should be replaced by hdfdict

5.19 [3.2.1] 2020 / 06 / 04

5.19.1 Changed

• Statuses of tabs are recovered when reading a project

• search disabled in consoles by default

• CLI improvements

5.17. [3.2.3] 2020 / 11 / 09 29

Opentea Documentation, Release 3.6.0

5.19.2 Fixed

• spurious dependency on python 3.7 for subprocess, now 3.6 is fine too

• no more deprecated calls to 3D engine

• for documentation : use recomonmark instead of m2r (deprecated)

5.20 [3.2] 2020 / 03 / 13

5.20.1 Added

• expert dialogs

• dynamic choices

• support of 3D viewer with tiny_3d_engine

5.20.2 Changed

• red output if an error is onprocess

• comments with clear enable/disable mode

• description can tag style tags for itlaliv, bold, small or tiny texts.

5.20.3 Fixed

• bug on multiple with depencencies if the list was going to zero

5.21 [3.1.1] 2020 / 01 / 15

5.21.1 Fixed

• deprecation warning from h5proxy removed (consider using hdfdict or H5wrapper instead..)

5.22 [3.1.0] 2019 / 12 / 05

5.22.1 Added

• h5proxy to read quickly in an H5file (consider using hdfdict or H5wrapper instead..)

• schema2md convert schema file into HTML tables

30 Chapter 5. Changelog

Opentea Documentation, Release 3.6.0

5.23 [3.0.0] 2019 / 03 / 26

5.23.1 Added

• Tkinter Graphical engine

• noob library

• nob_complete

• nob_validate

5.23.2 Deprecated

• All Tcl and Python for Version 2

5.24 [2.3] 2018 / 10 / 17

5.24.1 Changed

• Documentation using sphinx

• widget info can display icon depending on content

5.23. [3.0.0] 2019 / 03 / 26 31

Opentea Documentation, Release 3.6.0

32 Chapter 5. Changelog

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

33

	OpenTEA
	Installation
	Basic Usage

	Command line
	Acknowledgments
	Building the GUI
	Simple Example
	Second Node level, the tab
	Tabs callbacks

	Third Node level, the block
	Leaf level , or Parameters
	Entries

	simple arrays (lists)
	Disabled state
	Choices
	Comments

	Files and folder

	Special blocks
	eXclusive OR objects
	Multiple objects
	Multiple with dependency

	Data output
	Style adjustments
	Theme
	Images
	Block Descriptions

	Changelog
	[3.6.0] 2023 / 07 / 02
	Added
	Changed
	[3.5.0] 2023 / 02 / 02
	Added
	Changed
	Fixed
	[3.4.4] 2022 / 09 / 12
	Fixed
	[3.4.3] 2022 / 07 / 13
	Changed
	Fixed
	[3.4.2] 2022 / 07 / 04
	Changed
	Fixed

	[3.4.1] 2021 / 10 / 04
	Added
	Fixed
	Changed

	[3.3.1] 2021 / 05 / 07
	Fixed

	[3.3.0] 2021 / 03 / 09
	Added
	Changed

	[3.2.3] 2020 / 11 / 09
	Fixed

	[3.2.2] 2020 / 11 / 09
	Changed
	Fixed
	Deprecated

	[3.2.1] 2020 / 06 / 04
	Changed
	Fixed

	[3.2] 2020 / 03 / 13
	Added
	Changed
	Fixed

	[3.1.1] 2020 / 01 / 15
	Fixed

	[3.1.0] 2019 / 12 / 05
	Added

	[3.0.0] 2019 / 03 / 26
	Added
	Deprecated

	[2.3] 2018 / 10 / 17
	Changed

	Indices and tables

